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Integration by Parts Supplement 
 

Integration by parts is a technique for evaluating integrals whose integrand is the 

product of two functions. 

 

For example,  dxxx sin2  or  dxex x .  The rule is: 

 

   dxxuxvxvxudxxvxu )(')()()()(')(   (1) 

 

 

Note:  With xdxvvd )(' , and xdxuud )(' , the rule is also written more compactly as 
 

   duvvudvu  (2) 

 

Equation 1 comes from the product rule: 
 

   )(')()()(')()( xvxuxvxuxvxuDx   (3) 
 

Integrating both sides of Eq. 3 with respect to x gives 
 

      xdxvxuxvxudxxvxuDx )(')()()(')()(   

or 

   xdxvxuxdxuxvxvxu )(')()(')()()(   

 

which is equivalent to Eq.  (1). 
 

Example 1:  Evaluate  dxex x  .  

Choose xu   and xdevd x , then xdud   and xev  .  Eq. (2) 

gives 
 

Ceex

xdeexdxex

xx

xxx



   

 

 

Choice of u and dv.  Use the following rule-of-thumb: (IT DOESN’T ALWAYS 

WORK!!!!) 
 

           u                                 dv 

    L I A T E 
Where 

 L = Logarithmic Functions 

 I = Inverse Functions (inverse trig, or hyperbolic) 

 A = Algebraic Functions (Polynomial, rational, root functions etc.) 

 T = Trigonometric Functions (Primarily sine and cosine.) 

 E = Exponential Functions 
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Examine the two functions in the integrand.  However they order themselves in the 

word LIATE choose the function on the left to be u and the other function (the right) to be dv.  

In the integral before the two function were x (algebraic) and 
xe  (exponential).  Since A is to 

the left of E in the word LIATE we pick xu   and xdevd x .    
 

WHY?? Because you always take the derivative of the function u and integrate the 

function dv. Derivatives of logarithmic and inverse functions become 

algebraic.  That is they “move” over to the right which tend to be “easier” 

functions.  Whereas taking the integral of trigonometric or exponential 

functions is usually no problem. 
 

 

Repeated integration-by-parts. 
 

Using this method on an integral like  dxex x4  can get pretty tedious.  Choose 

4xu    and xdevd x , then xdxud 34  and xev  .  Eq. (2) gives 

   dxexexdxex xxx 344 4  

The original integral is reduced to a difference of two terms.  The resulting integral (on the 

right) must also be handled by integration by parts, but the degree of the monomial has been 

“knocked down” by 1.  Repeating the process with 34 xu    and xdevd x  gives 

  













dxexexex

dxexexex

dxexexdxex

xxx

xxx

xxx

234

234

344

124

124
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Repeating this process two more times reduces the integral to 

                     dxeexexexexdxex xxxxxx 2424124 2344    

 (CHECK THIS!!) 

 

The last integral is well known so that 

 

                  Ceexexexexdxex xxxxxx  2424124 2344  

 

Notice what happened.  We started out with a fourth degree monomial times an 

exponential.  Using integration-by-parts 4 times takes 4 derivatives of the original function 
4xu   reducing the integral to one easily done.  Can you guess how many times integration-

by-parts would have to be used to do the integral  dxex x400 ?  You bet:  400.  Ouch!  There 

is a better way to handle these types of integrals.  Namely integrals of the form  dxxfxn )( , 
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where n is any positive integer and f(x) is an easily integrable exponential or trigonometric 

function.  Construct a table that looks like the following: 

 

u dv +1 
4x  

xe  

   

   

  +1 

   

  +1 

 

 

Now in the column under u continually take derivatives until you get 0.  In the column 

under dv keep on integrating the function.  We get the following table: 
 

u dv +1 
4x  

xe  
34 x  

xe   

212 x  
xe   

x24  xe  +1 

24 xe   

0 xe  +1 
 

 

Now taking the products shown above gives the previous result 

Ceexexexexdxex xxxxxx  2424124 2344 . 

 

As another example consider  dxxx cos4 .  we construct the following table 

u dv +1 
4x  xcos  

34 x  xsin   

212 x  xcos   

x24  xsin  +1 

24 xcos   

0 xsin  +1 

 

and deduce that  

Cxxxxxxxxxdxxx  sin24cos24sin12cos4sincos 2344  

(Check This!) 

 

 

 



 

 4 

Integrands that “never go away.” 

 

If the integral in question contains functions that have an infinite number of non-zero 

derivatives (like exponential or trig functions) then this method does not work so nicely, but 

you can still use it.  

 

 

Example 2:   Evaluate  
 dxxe x 2cos  .  

Let xu 2cos  and xdevd x , then xdxud 2sin2 , and  xev  , and the integration-

by-parts formula gives 


  dxexxedxxe xxx 2sin22cos2cos  

Repeating the process, for the integral on the right, now with xu 2sin2  and xdevd x , 

gives xdxud 2cos4  and xev   and hence 


  dxexxexedxxe xxxx 2cos42sin22cos2cos  

Notice we get back a multiple of the original integral.  Adding this integral onto the left-hand 

side gives 

xexedxexdxxe xxxx 2sin22cos2cos42cos     

or 

Example 2 (cont.) 

xexedxex xxx 2sin22cos2cos5    

Now dividing by 5 and remembering the arbitrary constant gives 

C
xexe

dxex
xx

x 







 5

2sin22cos
2cos  

(CHECK THIS!) 

 

 

 

 

 

Integrands that “have only one function.” 
 

When the integrand has only one function, just remember that you can always choose 

dxdv  .  

 

Example 3:  dxxln  

Here choose xu ln  and dxdv  , in which case dx
x

du
1

  and xv  .  Equation 2 gives 

Cxxx

dxxxdxx



 
ln

lnln
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Example 4:  dxx)/1(arctan  

Here choose )/1(arctan xu   and dxdv  , in which case dx
x

du
1

1
2 


  and xv  .  

Equation 2 gives 

  Cxxx

dx
x

x
xxdxx




 

1ln
2

1
)/1(arctan

1
)/1(arctan)/1(arctan

2

2

 


