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vJust as a mountaineer climbs a mountain – because it is there, so

a good mathematics student studies new material because

it is there. — JAMES B. BRISTOL v

7.1  Introduction

Differential Calculus is centred on the concept of the

derivative. The original motivation for the derivative was

the problem of defining tangent lines to the graphs of

functions and calculating the slope of such lines. Integral

Calculus is motivated by the problem of defining and

calculating the area of the region bounded by the graph of

the functions.

If a function f  is differentiable in an interval I, i.e., its

derivative f ′exists at each point of I, then a natural question

arises that given f ′at each point of I, can we determine

the function? The functions that could possibly have given

function as a derivative are called anti derivatives (or

primitive) of the function. Further, the formula that gives

all these anti derivatives is called the indefinite integral of the function and such

process of finding anti derivatives is called integration. Such type of problems arise in

many practical situations. For instance, if we know the instantaneous velocity of an

object at any instant, then there arises a natural question, i.e., can we determine the

position of the object at any instant? There are several such practical and theoretical

situations where the process of integration is involved. The development of integral

calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,

(b) the problem of finding the area bounded by the graph of a function under certain
conditions.

These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.

Chapter 7

INTEGRALS

G .W. Leibnitz

(1646 -1716)

Prof. Dr. Shawki Khalaph Muhammad



288 MATHEMATICS

There is a connection, known as the Fundamental Theorem of Calculus, between

indefinite integral and definite integral which makes the definite integral as a practical

tool for science and engineering. The definite integral is also used to solve many interesting

problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite

integrals and their elementary properties including some techniques of integration.

7.2  Integration as an Inverse Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,

we are given the derivative of a function and asked to find its primitive, i.e., the original

function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

We know that (sin )
d

x
dx

 = cos x ... (1)

3

( )
3

d x

dx
 = x 2 ... (2)

and ( )
xd

e
dx

= ex ... (3)

We observe that in (1), the function cos x is the derived function of sin x. We say

that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3), 
3

3

x
 and

ex are the anti derivatives (or integrals) of x2 and ex, respectively. Again, we note that

for any real number C, treated as constant function, its derivative is zero and hence, we

can write (1), (2) and (3) as follows :

(sin + C) cos=
d

x x
dx

, 
3

2( + C)
3

=
d x

x
dx

and ( + C) =x xd
e e

dx
Thus, anti derivatives (or integrals) of the above cited functions are not unique.

Actually, there exist infinitely many anti derivatives of each of these functions which

can be obtained by choosing C arbitrarily from the set of real numbers. For this reason

C is customarily referred to as arbitrary constant. In fact, C is the parameter by

varying which one gets different anti derivatives (or integrals) of the given function.

More generally, if there is a function F such that F ( ) = ( )
d

x f x
dx

, ∀ x ∈ I (interval),

then for any arbitrary real number C, (also called constant of integration)

[ ]F ( ) + C
d

x
dx

 = f (x), x ∈ I
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Thus, {F + C, C ∈ R} denotes a family of anti derivatives of f.

Remark  Functions with same derivatives differ by a constant. To show this, let g and h

be two functions having the same derivatives on an interval I.

Consider the function f = g – h defined by f (x) = g(x) – h (x), ∀ x ∈ I

Then
df

dx
= f′ = g′  – h′ giving  f′ (x) = g′ (x) – h′ (x) ∀ x ∈ I

or f ′ (x) = 0, ∀x ∈ I by hypothesis,

i.e., the rate of change of f with respect to x is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C ∈ R}

provides all possible anti derivatives of f.

We introduce a new symbol, namely, ( )f x dx∫  which will represent the entire

class of anti derivatives read as the indefinite integral of f with respect to x.

Symbolically, we write ( ) = F ( ) + Cf x dx x∫ .

Notation Given that  ( )
dy

f x
dx

= , we write y = ( )f x dx∫ .

For the sake of convenience, we mention below the following symbols/terms/phrases

with their meanings as given in the Table (7.1).

Table 7.1

Symbols/Terms/Phrases Meaning

( )f x dx∫ Integral of f  with respect to x

f (x) in  ( )f x dx∫ Integrand

x in  ( )f x dx∫ Variable of integration

Integrate Find the  integral

An integral of f A function F such that

F′(x) = f (x)

Integration The process of finding the integral

Constant of Integration Any real number C, considered as

constant function
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We already know the formulae for the derivatives of many important functions.

From these formulae, we can write down immediately the corresponding formulae

(referred to as standard formulae) for the integrals of these functions, as listed below

which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)

(i)

1

1

n
nd x

x
dx n

+ 
= 

+ 
 ;

1

C
1

n
n x

x dx
n

+

= +
+∫ , n ≠ –1

Particularly, we note that

( ) 1
d

x
dx

=  ;       Cdx x= +∫

(ii) ( )sin cos
d

x x
dx

=  ; cos sin Cx dx x= +∫

(iii) ( )– cos sin
d

x x
dx

=  ; sin cos Cx dx – x= +∫

(iv) ( ) 2tan sec
d

x x
dx

=  ;
2

sec tan Cx dx x= +∫

(v) ( ) 2
– cot cosec

d
x x

dx
=  ;

2
cosec cot Cx dx – x= +∫

(vi) ( )sec sec tan
d

x x x
dx

=  ; sec tan sec Cx x dx x= +∫

(vii) ( )– cosec cosec cot
d

x x x
dx

=  ; cosec cot – cosec Cx x dx x= +∫

(viii) ( )– 1

2

1
sin

1

d
x

dx – x
=

 ;
– 1

2
sin C

1

dx
x

– x
= +∫

(ix) ( )– 1

2

1
– cos

1

d
x

dx – x
=

 ;
– 1

2
cos C

1

dx
– x

– x
= +∫

(x) ( )– 1

2

1
tan

1

d
x

dx x
=

+
 ;

– 1

2
tan C

1

dx
x

x
= +

+∫

(xi) ( )– 1

2

1
– cot

1

d
x

dx x
=

+
 ;

– 1

2
cot C

1

dx
– x

x
= +

+∫
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(xii) ( )– 1

2

1
sec

1

d
x

dx x x –
=

 ;
– 1

2
sec C

1

dx
x

x x –
= +∫

(xiii) ( )– 1

2

1
– cosec

1

d
x

dx x x –
=

 ;
– 1

2
cosec C

1

dx
– x

x x –
= +∫

(xiv) ( )
x xd

e e
dx

=  ; C
x x

e dx e= +∫

(xv) ( )
1

log | |
d

x
dx x

= ;
1

log | | Cdx x
x

= +∫

(xvi)

x
xd a

a
dx log a

 
= 

 
 ; C

x
x a

a dx
log a

= +∫

ANote  In practice, we normally do not mention the interval over which the various

functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f (x) = 2x. Then 
2

( ) Cf x dx x= +∫ . For different values of C, we get different

integrals. But these integrals are very similar geometrically.

Thus, y = x2 + C, where C is arbitrary constant, represents a family of integrals. By

assigning different values to C, we get different members of the family. These together

constitute the indefinite integral. In this case, each integral represents a parabola with

its axis along y-axis.

Clearly, for C = 0, we obtain y = x2, a parabola with its vertex on the origin. The

curve y = x2 + 1 for C = 1 is obtained by shifting the parabola y = x2 one unit along

y-axis in positive direction. For C = – 1, y = x2 – 1 is obtained by shifting the parabola

y = x2 one unit along y-axis in the negative direction. Thus, for each positive value of C,

each parabola of the family has its vertex on the positive side of the y-axis and for

negative values of C, each has its vertex along the negative side of the y-axis. Some of

these have been shown in the Fig 7.1.

Let us consider the intersection of all these parabolas by a line x = a. In the Fig 7.1,

we have taken a > 0. The same is true when a < 0. If the line x = a intersects the

parabolas y = x2, y = x2 + 1, y = x2 + 2, y = x2 – 1, y = x2 – 2 at P
0
, P

1
, P

2
, P

–1
, P

–2
 etc.,

respectively, then 
dy

dx
 at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, 
2

C2 C F ( )x dx x x= + =∫ (say), implies that
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the tangents to all the curves y = F
C 

(x), C ∈ R, at the points of intersection of the
curves by the line x = a, (a ∈ R), are parallel.

Further, the following equation (statement) ( ) F ( ) C (say)f x dx x y= + =∫ ,

represents a family of curves. The different values of C will correspond to different

members of this family and these members can be obtained by shifting any one of the

curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral

In this sub section, we shall derive some properties of indefinite integrals.

(I) The process of differentiation and integration are inverses of each other in the

sense of the following results :

( )
d

f x dx
dx
∫  = f (x)

and ( )f x dx′∫  = f (x) + C, where C is any arbitrary constant.

Fig 7.1
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Proof Let F be any anti derivative of f, i.e.,

F( )
d

x
dx

 = f (x)

Then ( )f x dx∫  = F(x) + C

Therefore ( )
d

f x dx
dx ∫

 = ( )F ( ) + C
d

x
dx

= F ( ) = ( )
d

x f x
dx

Similarly, we note that

f ′(x) = ( )
d

f x
dx

and hence ( )f x dx′∫  = f (x) + C

where C is arbitrary constant called constant of integration.

(II) Two indefinite integrals with the same derivative lead to the same family of

curves and so they are equivalent.

Proof Let f and g be two functions such that

( )
d

f x dx
dx
∫  = ( )

d
g x dx

dx ∫

or ( ) ( )
d

f x dx – g x dx
dx
 
 ∫ ∫  = 0

Hence ( ) ( )f x dx – g x dx∫ ∫ = C, where C is any real number   (Why?)

or ( )f x dx∫  = ( ) Cg x dx +∫

So the families of curves { }1 1( ) C ,C Rf x dx + ∈∫

and { }2 2( ) C , C Rg x dx + ∈∫  are identical.

Hence, in this sense, ( ) and ( )f x dx g x dx∫ ∫  are equivalent.
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A Note The equivalence of the families { }1 1( ) + C ,Cf x dx ∈∫ R  and

{ }2 2( ) + C ,Cg x dx ∈∫ R  is customarily expressed by writing ( ) = ( )f x dx g x dx∫ ∫ ,

without mentioning the parameter.

(III) [ ]( ) + ( ) ( ) + ( )f x g x dx f x dx g x dx=∫ ∫ ∫
Proof By Property (I), we have

[ ( ) + ( )]
d

f x g x dx
dx
 
 ∫  = f (x) + g (x) ... (1)

 On the otherhand, we find that

( ) + ( )
d

f x dx g x dx
dx

 
 ∫ ∫  = ( ) + ( )

d d
f x dx g x dx

dx dx
∫ ∫

= f (x) + g (x) ... (2)

  Thus, in view of Property (II), it follows by (1) and (2)  that

( )( ) ( )f x g x dx+∫ = ( ) ( )f x dx g x dx+∫ ∫ .

(IV)  For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫

Proof By the Property (I), ( ) ( )
d

k f x dx k f x
dx

=∫ .

Also ( )
d

k f x dx
dx

 
 ∫  =  ( ) = ( )

d
k f x dx k f x

dx
∫

 Therefore, using the Property (II), we have ( ) ( )k f x dx k f x dx=∫ ∫ .

(V) Properties (III) and (IV) can be generalised to a finite number of functions

f
1
, f

2
, ..., f

n
 and the real numbers, k

1
, k

2
, ..., k

n
 giving

[ ]1 1 2 2( ) ( ) ( )n nk f x k f x ... k f x dx+ + +∫

= 1 1 2 2( ) ( ) ( )n nk f x dx k f x dx ... k f x dx+ + +∫ ∫ ∫ .

To find an anti derivative of a given function, we search intuitively for a function

whose derivative is the given function. The search for the requisite function for finding

an anti derivative is known as integration by the method of inspection. We illustrate it

through some examples.
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Example 1 Write an anti derivative for each of the following functions using the

method of inspection:

(i) cos 2x (ii) 3x2 + 4x3 (iii)
1

x
, x ≠ 0

Solution

(i) We look for a function whose derivative is cos 2x. Recall that

d

dx
 sin 2x = 2 cos 2x

or cos 2x = 
1

2

d

dx
 (sin 2x) =

1
sin 2

2

d
x

dx

 
 
 

Therefore, an anti derivative of cos 2x is 
1

sin 2
2

x .

(ii) We look for a function whose derivative is 3x2 + 4x3. Note that

( )3 4d
x x

dx
+ = 3x2 + 4x3.

Therefore, an anti derivative of 3x2 + 4x3  is  x3 + x4.

(iii) We know that

1 1 1
(log ) 0 and [log ( )] ( 1) 0

d d
x ,x – x – ,x

dx x dx – x x
= > = = <

Combining above, we get ( )
1

log 0
d

x , x
dx x

= ≠

Therefore, 
1

logdx x
x

=∫  is one of the anti derivatives of 
1

x
.

Example 2 Find the following integrals:

(i)

3

2

1x –
dx

x
∫ (ii)   

2

3( 1)x dx+∫ (iii)   ∫
3

2
1

( 2 – )+∫
x

x e dx
x

Solution

(i) We have

3
2

2

1 –x –
dx x dx – x dx

x
=∫ ∫ ∫ (by Property V)
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= 

1 1 2 1

1 2C C
1 1 2 1

–
x x

–
–

+ +   
+ +   

+ +   
;  C

1
, C

2
 are constants of integration

= 

2 1

1 2C C
2 1

–
x x

– –
–

+  = 

2

1 2

1
+ C C

2

x
–

x
+

= 
2

1
+ C

2

x

x
+ , where C = C

1
 – C

2
 is another constant of integration.

ANote  From now onwards, we shall write only one constant of integration in the

final answer.

(ii) We have
2 2

3 3( 1)x dx x dx dx+ = +∫ ∫ ∫

=

2
1

3

C
2

1
3

x
x

+

+ +

+
 = 

5

3
3

C
5

x x+ +

(iii) We have 

3 3

2 2
1 1

( 2 ) 2
x x

x e – dx x dx e dx – dx
x x

+ = +∫ ∫ ∫ ∫

=

3
1

2

2 – log + C
3

1
2

xx
e x

+

+

+

=

5

2
2

2 – log + C
5

x
x e x+

Example 3 Find the following integrals:

(i) (sin cos )x x dx+∫ (ii) cosec (cosec cot )x x x dx+∫

(iii) 2

1 sin

cos

– x
dx

x
∫

Solution

(i) We have

(sin cos ) sin cosx x dx x dx x dx+ = +∫ ∫ ∫
= – cos sin Cx x+ +

Prof. Dr. Shawki Khalaph Muhammad



INTEGRALS         297

(ii) We have

2
(cosec (cosec + cot ) cosec cosec cotx x x dx x dx x x dx= +∫ ∫ ∫

= – cot cosec Cx – x +

(iii) We have

2 2 2

1 sin 1 sin

cos cos cos

– x x
dx dx – dx

x x x
=∫ ∫ ∫

= 
2

sec tan secx dx – x x dx∫ ∫
= tan sec Cx – x +

Example 4 Find the anti derivative F of  f defined by f (x) = 4x3 – 6, where F (0) = 3

Solution One anti derivative of f (x) is x4 – 6x since

4
( 6 )

d
x – x

dx
 = 4x3 – 6

Therefore, the anti derivative F is given by

F(x) = x4 – 6x + C, where C is constant.

Given that F(0) = 3, which gives,

3 = 0 – 6 × 0 + C    or    C = 3

Hence, the required anti derivative is the unique function F defined by

F(x) = x4 – 6x + 3.

Remarks

(i) We see that if F is an anti derivative of f, then so is F + C, where C is any

constant. Thus, if we know one anti derivative F of a function f, we can write

down an infinite number of anti derivatives of f by adding any constant to F

expressed by F(x)  + C, C ∈ R. In applications, it is often necessary to satisfy an

additional condition which then determines a specific value of C giving unique

anti derivative of the given function.

(ii) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,

logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding ( )f x dx∫ . For example, it is not possible to find

2– x
e dx∫  by inspection since we can not find a function whose derivative is 

2
– xe
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(iii) When the variable of integration is denoted by a variable other than x, the integral

formulae are modified accordingly. For instance

4 1
4 51

C C
4 1 5

y
y dy y

+

= + = +
+∫

7.2.3 Comparison between differentiation and integration

1. Both are operations on functions.

2. Both satisfy the property of linearity, i.e.,

(i) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )
d d d

k f x k f x k f x k f x
dx dx dx

+ = +

(ii) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )k f x k f x dx k f x dx k f x dx+ = +∫ ∫ ∫
Here k

1
 and k

2
 are constants.

3. We have already seen that all functions are not differentiable. Similarly, all functions

are not integrable. We will learn more about nondifferentiable functions and

nonintegrable functions in higher classes.

4. The derivative of a function, when it exists, is a unique function. The integral of

a function is not so. However, they are unique upto an additive constant, i.e., any

two integrals of a function differ by a constant.

5. When a polynomial function P is differentiated, the result is a polynomial whose

degree is 1 less than the degree of  P. When a polynomial function P is integrated,

the result is a polynomial whose degree is 1 more than that of P.

6. We can speak of the derivative at a point. We never speak of the integral at a

point, we speak of the integral of a function over an interval on which the integral

is defined as will be seen in Section 7.7.

7. The derivative of a function has a geometrical meaning, namely, the slope of the

tangent to the corresponding curve at a point. Similarly, the indefinite integral of

a function represents geometrically, a family of curves placed parallel to each

other having parallel tangents at the points of intersection of the curves of the

family with the lines orthogonal (perpendicular) to the axis representing the variable

of integration.

8. The derivative is used for finding some physical quantities like the velocity of a

moving particle, when the distance traversed at any time t is known. Similarly,

the integral is used in calculating the distance traversed when the velocity at time

t is known.

9. Differentiation is a process involving limits. So is integration, as will be seen in

Section 7.7.
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10. The process of differentiation and integration are inverses of each other as

discussed in Section 7.2.2 (i).

EXERCISE 7.1

Find an anti derivative (or integral) of the following functions by the method of inspection.

1. sin 2x 2. cos 3x 3. e 2x

4. (ax + b)2 5. sin 2x – 4 e3x

Find the following integrals in Exercises 6 to 20:

6.
3

(4 + 1) 
x

e dx∫ 7.
2

2

1
(1 – )x dx

x
∫ 8.

2
( )ax bx c dx+ +∫

9.
2

(2 )
x

x e dx+∫ 10.

2
1

x – dx
x

 
 
 
∫ 11.

3 2

2

5 4x x –
dx

x

+
∫

12.

3
3 4x x

dx
x

+ +
∫ 13.

3 2
1

1

x x x –
dx

x –

− +
∫ 14. (1 )– x x dx∫

15.
2

( 3 2 3)x x x dx+ +∫ 16. (2 3cos )
x

x – x e dx+∫
17.

2
(2 3sin 5 )x – x x dx+∫ 18. sec (sec tan )x x x dx+∫

19.

2

2

sec

cosec

x
dx

x
∫ 20.

2

2 – 3sin

cos

x

x∫ dx.

Choose the correct answer in Exercises 21 and 22.

21. The anti derivative of 
1

x
x

 
+ 

 
 equals

(A)

1 1

3 2
1

2 C
3

x x+ + (B)

2
23

2 1
C

3 2
x x+ +

(C)

3 1

2 2
2

2 C
3

x x+ + (D)

3 1

2 2
3 1

C
2 2

x x+ +

22. If 
3

4

3
( ) 4

d
f x x

dx x
= −  such that f (2) = 0. Then f (x) is

(A)
4

3

1 129

8
x

x
+ − (B)

3

4

1 129

8
x

x
+ +

(C)
4

3

1 129

8
x

x
+ + (D)

3

4

1 129

8
x

x
+ −
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7.3  Methods of Integration

In previous section, we discussed integrals of those functions which were readily

obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of f. However,

this method, which depends on inspection, is not very suitable for many functions.
Hence, we need to develop additional techniques or methods for finding the integrals

by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution

2. Integration using Partial Fractions

3. Integration by Parts

7.3.1 Integration by substitution

In this section, we consider the method of integration by substitution.

The given integral ( )f x dx∫  can be transformed into another form by changing

the independent variable x to t by substituting x = g ( t).

Consider I = ( )f x dx∫

Put x = g(t) so that 
dx

dt
 =  g′(t).

We write dx = g′(t) dt

Thus I = ( ) ( ( )) ( )f x dx f g t g t dt= ′∫ ∫
This change of variable formula is one of the important tools available to us in the

name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:

(i) sin mx (ii) 2x sin (x2 + 1)

(iii)

4 2
tan secx x

x
(iv)

1

2

sin (tan )

1

–
x

x+

Solution

(i) We know that derivative of mx is m. Thus, we make the substitution
mx = t so that mdx = dt.

Therefore,      
1

sin sinmx dx t dt
m

=∫ ∫  =  – 
1

m
cos t + C  = – 

1

m
cos mx + C
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(ii) Derivative of x2 + 1 is 2x. Thus, we use the substitution x2 + 1 = t so that
2x dx = dt.

Therefore,  
2

2 sin ( 1) sinx x dx t dt+ =∫ ∫  =  – cos t + C  = – cos (x2 + 1) + C

(iii) Derivative of x  is 

1

2
1 1

2 2

–

x
x

= . Thus, we use the substitution

1
so that giving

2
x t dx dt

x
= =  dx = 2 t dt.

Thus,

4 2 4 2
tan sec 2 tan secx x t t t dt

dx
tx

=∫ ∫  = 
4 2

2 tan sect t dt∫
Again, we make another substitution tan t = u so that sec2 t dt = du

Therefore,
4 2 4

2 tan sec 2t t dt u du=∫ ∫  = 

5

2 C
5

u
+

=
52

tan C
5

t +  (since u = tan t)

=
52

tan C (since )
5

x t x+ =

Hence,

4 2
tan secx x

dx
x

∫  =
52

tan C
5

x +

Alternatively, make the substitution tan x t=

(iv) Derivative of  1

2

1
tan

1

– x
x

=
+

. Thus, we use the substitution

tan–1  x = t so that 
21

dx

x+
 = dt.

Therefore ,  

1

2

sin (tan )
sin

1

–
x

dx t dt
x

=
+∫ ∫  =  – cos t + C = – cos (tan –1x) + C

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

(i) ∫ tan = log sec + Cx dx x

We have

sin
tan

cos

x
x dx dx

x
=∫ ∫
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Put  cos x = t so that sin x dx = – dt

Then tan log C log cos C
dt

x dx – – t – x
t

= = + = +∫ ∫

or tan log sec Cx dx x= +∫
(ii) ∫ cot = log sin + Cx dx x

We have
cos

cot
sin

x
x dx dx

x
=∫ ∫

Put  sin x = t so that cos x dx = dt

Then cot
dt

x dx
t

=∫ ∫  = log Ct +  = log sin Cx +

(iii) ∫ sec = log sec + tan + Cx dx x x

We have

sec (sec tan )
sec

sec + tan

x x x
x dx dx

x x

+
=∫ ∫

Put sec x + tan x = t so that sec x (tan x + sec x) dx  = dt

Therefore, sec log + C = log sec tan C
dt

x dx t x x
t

= = + +∫ ∫

(iv) ∫ cosec = log cosec – cot + Cx dx x x

We have

cosec (cosec cot )
cosec

(cosec cot )

x x x
x dx dx

x x

+
=

+∫ ∫
Put cosec x + cot x = t so that – cosec x (cosec x + cot x) dx = dt

So cosec – – log | | – log |cosec cot | C
dt

x dx t x x
t

= = = + +∫ ∫

=

2 2
cosec cot

– log C
cosec cot

x x

x x

−
+

−

= log cosec cot Cx – x +

Example 6 Find the following integrals:

(i)
3 2

sin cosx x dx∫ (ii)    
sin

sin ( )

x
dx

x a+∫     (iii)  
1

1 tan
dx

x+∫
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Solution

(i) We have

3 2 2 2
sin cos sin cos ( sin )x x dx x x x dx=∫ ∫

= 
2 2

(1 – cos ) cos (sin )x x x dx∫
Put t = cos x so that dt = – sin x dx

Therefore,    
2 2

sin cos (sin )x x x dx∫  = 
2 2

(1 – )t t dt− ∫

= 

3 5
2 4

( – ) C
3 5

t t
– t t dt – –

 
= + 

 
∫

= 
3 51 1

cos cos C
3 5

– x x+ +

(ii) Put x + a = t. Then dx = dt. Therefore

sin sin ( )

sin ( ) sin

x t – a
dx dt

x a t
=

+∫ ∫

= 
sin cos cos sin

sin

t a – t a
dt

t∫

= cos – sin cota dt a t dt∫ ∫

= 1(cos ) (sin ) log sin Ca t – a t + 

= 1(cos ) ( ) (sin ) log sin ( ) Ca x a – a x a + + + 

= 1cos cos (sin ) log sin ( ) C sinx a a a – a x a – a+ +

Hence, 
sin

sin ( )

x
dx

x a+∫  = x cos a – sin a log |sin (x + a)| + C,

where,  C = – C
1
 sin a + a cos a, is another arbitrary constant.

(iii)
cos

1 tan cos sin

dx x dx

x x x
=

+ +∫ ∫

= 
1 (cos + sin + cos – sin )

2 cos sin

x x x x dx

x x+∫
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= 
1 1 cos – sin

2 2 cos sin

x x
dx dx

x x
+

+∫ ∫

= 
1C 1 cos sin

2 2 2 cos sin

x x – x
dx

x x
+ +

+∫ ... (1)

Now, consider 
cos sin

I
cos sin

x – x
dx

x x
=

+∫
Put cos x + sin x = t so that (cos x – sin x) dx = dt

Therefore       2I log C
dt

t
t

= = +∫ = 2log cos sin Cx x+ +

Putting it in (1), we get

1 2C C1
+ + log cos sin

1 tan 2 2 2 2

dx x
x x

x
= + +

+∫

= 
1 2C C1

+ log cos sin
2 2 2 2

x
x x+ + +

= 
1 2C C1

+ log cos sin C C
2 2 2 2

x
x x ,

 
+ + = + 

 

EXERCISE 7.2

Integrate the functions in Exercises 1 to 37:

1. 2

2

1

x

x+
2.

( )
2

log x

x
3.

1

logx x x+

4. sin sin (cos )x x 5. sin ( ) cos ( )ax b ax b+ +

6. ax b+ 7. 2x x + 8.
2

1 2x x+

9. 2
(4 2) 1x x x+ + + 10.

1

x – x
11.

4

x

x +
, x > 0

12.

1
3 53( 1)x – x 13.

2

3 3
(2 3 )

x

x+
14.

1

(log )
m

x x
, x > 0, 1≠m

15. 29 4

x

– x
16. 2 3x

e
+ 17. 2x

x

e
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18.

1

2
1

–tan x
e

x+
19.

2

2

1

1

x

x

e –

e +
20.

2 2

2 2

x – x

x – x

e – e

e e+

21. tan2 (2x – 3) 22. sec2 (7 – 4x) 23.
1

2

sin

1

–
x

– x

24.
2cos 3sin

6cos 4sin

x – x

x x+
25. 2 2

1

cos (1 tan )x – x
26.

cos x

x

27. sin 2 cos 2x x 28.
cos

1 sin

x

x+
29. cot x log sin x

30.
sin

1 cos

x

x+ 31. ( )
2

sin

1 cos

x

x+ 32.
1

1 cot x+

33.
1

1 tan– x
34.

tan

sin cos

x

x x
35.

( )2
1 log x

x

+

36.
( )

2
( 1) logx x x

x

+ +
37.

( )3 1 4
sin tan

1

–
x x

x
8+

Choose the correct answer in Exercises 38 and 39.

38.
10

9

10

10 10 log

10

x

e

x

x dx

x

+

+∫  equals

(A) 10x – x10 + C (B) 10x + x10  + C

(C) (10x – x10)–1  + C (D) log (10x + x10) + C

39. 2 2
equals

sin cos

dx

x x∫
(A) tan x + cot x + C (B)  tan x – cot x + C

(C) tan x cot x + C (D)  tan x – cot 2x + C

7.3.2  Integration using trigonometric identities

When the integrand involves some trigonometric functions, we use some known identities

to find the integral as illustrated through the following example.

Example 7 Find (i) 
2

cos x dx∫  (ii) sin 2 cos 3x x dx∫  (iii) 
3

sin x dx∫
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Solution

(i) Recall the identity cos 2x = 2 cos2 x – 1, which gives

cos2x = 
1 cos 2

2

x+

Therefore,      
2cos∫ x dx  = 

1
(1 + cos 2 )

2
x dx∫ = 

1 1
cos 2

2 2
dx x dx+∫ ∫

= 
1

sin 2 C
2 4

x
x+ +

(ii) Recall the identity sin x cos y = 
1

2
[sin (x + y) + sin (x – y)] (Why?)

Then   sin 2 cos 3∫ x xdx  = 
1

sin 5 sin
2

• 
 ∫ ∫x dx x dx

= 
1 1

cos 5 cos C
2 5

– x x
 

+ + 
 

= 
1 1

cos 5 cos C
10 2

– x x+ +

(iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that

sin3x = 
3sin sin 3

4

x – x

Therefore,      
3

sin x dx∫  = 
3 1

sin sin 3
4 4

x dx – x dx∫ ∫

                                      = 
3 1

– cos cos 3 C
4 12

x x+ +

Alternatively, 
3 2

sin sin sinx dx x x dx=∫ ∫  = 
2

(1 – cos ) sinx x dx∫
Put cos x = t so that – sin x dx = dt

Therefore,     
3

sin x dx∫  = ( )2
1 – t dt− ∫  = 

3
2

C
3

t
– dt t dt – t+ = + +∫ ∫

= 
31

cos cos C
3

– x x+ +

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3

Find the integrals of the functions in Exercises 1 to 22:

1. sin2 (2x + 5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x

4. sin3 (2x + 1) 5. sin3 x cos3 x 6. sin x sin 2x sin 3x

7. sin 4x sin 8x 8.
1 cos

1 cos

– x

x+
9.

cos

1 cos

x

x+

10. sin4 x 11. cos4 2x 12.
2

sin

1 cos

x

x+

13.
cos 2 cos 2

cos cos

x –

x –

α

α
14.

cos sin

1 sin 2

x – x

x+
15. tan3 2x sec 2x

16. tan4x 17.

3 3

2 2

sin cos

sin cos

x x

x x

+
18.

2

2

cos 2 2sin

cos

x x

x

+

19. 3

1

sin cosx x
20.

( )
2

cos 2

cos sin

x

x x+
21. sin – 1 (cos x)

22.
1

cos ( ) cos ( )x – a x – b

Choose the correct answer in Exercises 23 and 24.

23.
2 2

2 2

sin cos
is equal to

sin cos

x x
dx

x x

−
∫

(A) tan x + cot x + C (B) tan x + cosec x + C

(C) – tan x + cot x + C (D) tan x + sec x + C

24.
2

(1 )
equals

cos ( )

x

x

e x
dx

e x

+
∫

(A) – cot (exx) + C (B) tan (xex) + C

(C) tan (ex) + C (D) cot (ex) + C

7.4  Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them

for integrating many other related standard integrals:

(1) ∫ 2 2

1 –
= log + C

2 +–

dx x a

a x ax a
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(2) ∫ 2 2

1 +
= log + C

2 ––

dx a x

a a xa x

(3) ∫
– 1

2 2

1
tan C

dx x
= +

a ax + a

(4) ∫
2 2

2 2
= log + – + C

–

dx
x x a

x a

(5) ∫
– 1

2 2
= sin + C

–

dx x

aa x

(6) ∫
2 2

2 2
= log + + + C

+

dx
x x a

x a

We now prove the above results:

(1) We have  2 2

1 1

( ) ( )x – a x ax – a
=

+

= 
1 ( ) – ( ) 1 1 1

2 ( ) ( ) 2

x a x – a
–

a x – a x a a x – a x a

 +  
=   + +  

Therefore,  2 2

1

2

dx dx dx
–

a x – a x ax – a

 
=  

+ 
∫ ∫ ∫

= [ ]
1

log ( )| log ( )| C
2

| x – a – | x a
a

+ +

= 
1

log C
2

x – a

a x a
+

+

(2) In view of (1) above, we have

2 2

1 1 ( ) ( )

2 ( ) ( )–

a x a x

a a x a xa x

 + + −
=  

+ − 
 = 

1 1 1

2a a x a x

 
+ − + 
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      Therefore, 2 2
–

dx

a x
∫  = 

1

2

dx dx

a a x a x

 
+ − + 

∫ ∫

= 
1

[ log | | log | |] C
2

a x a x
a

− − + + +

= 
1

log C
2

a x

a a x

+
+

−

ANote  The technique used in (1) will be explained in Section 7.5.

(3) Put x = a tan θ. Then dx = a sec2 θ dθ.

Therefore,      2 2

dx

x a+∫  = 

2

2 2 2

θ θ

θ

sec

tan

a d

a a+∫

=
11 1 1

θ θ C tan C– x
d

a a a a
= + = +∫

(4) Let x = a secθ. Then dx = a secθ tan θ d θ.

Therefore,
2 2

dx

x a−
∫  =

2 2 2

secθ tanθ θ

sec θ

a d

a a−
∫

= 1secθ θ log secθ + tanθ + Cd =∫

=

2

12
log 1 C

x x
–

a a
+ +

=
2 2

1log log Cx x – a a+ − +

=
2 2

log + Cx x – a+ , where C = C
1
 – log |a|

(5) Let x = a sinθ. Then dx  = a cosθ dθ.

Therefore,  
2 2

dx

a x−
∫  =

2 2 2

θ θ

θ

cos

sin

a d

a – a
∫

=
1

θ= θ + C = sin C
– x

d
a

+∫
(6) Let x = a tan θ. Then dx = a sec2θ dθ.

Therefore,
2 2

dx

x a+
∫  =

2

2 2 2

θ θ

θ

sec

tan

a d

a a+
∫

  = 1θ θsecθ θ = log (sec tan ) Cd + +∫
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